Publikationen der AG Feldhoff

Zeige Ergebnisse 31 - 40 von 223

2021


Rosebrock, M., Zámbó, D., Rusch, P., Pluta, D., Steinbach, F., Bessel, P., Schlosser, A., Feldhoff, A., Hindricks, K. D. J., Behrens, P., Dorfs, D., & Bigall, N. C. (2021). Spatial Extent of Fluorescence Quenching in Mixed Semiconductor-Metal Nanoparticle Gel Networks. Advanced functional materials, 31(41), Artikel 2101628. https://doi.org/10.1002/adfm.202101628
Steinhoff, T., Wolf, M., Nürnberger, F., Gerstein, G., & Feldhoff, A. (2021). Evaluation of Cu­Ni­Based Alloys for Thermoelectric Energy Conversion. Materials Science Forum, 1016, 107-112. https://doi.org/10.4028/www.scientific.net/MSF.1016.107
Tomasino, D. V., Wolf, M., Farina, H., Chiarello, G., Feldhoff, A., Ortenzi, M. A., & Sabatini, V. (2021). Role of Doping Agent Degree of Sulfonation and Casting Solvent on the Electrical Conductivity and Morphology of PEDOT:SPAES Thin Films. Polymers, 13(4), Artikel 658. https://doi.org/10.3390/polym13040658
Zámbó, D., Schlosser, A., Graf, R. T., Rusch, P., Kißling, P. A., Feldhoff, A., & Bigall, N. C. (2021). One-Step Formation of Hybrid Nanocrystal Gels: Deposition of Metal Domains on CdSe/CdS Nanorod and Nanoplatelet Networks. Advanced Optical Materials, 9(17), Artikel 2100291. https://doi.org/10.1002/adom.202100291

2020


Abt, M., Wolf, M., Feldhoff, A., & Overmeyer, L. (2020). Combined spray-coating and laser structuring of thermoelectric ceramics. Journal of Materials Processing Technology, 275, Artikel 116319. https://doi.org/10.1016/j.jmatprotec.2019.116319
Balanov, V. A., Zhao, Z., Pan, M., Feldhoff, A., & Bai, Y. (2020). Sol–gel synthesis and structural characterization of band gap engineered ferroelectric perovskite oxide potassium sodium barium nickel niobate. Journal of Sol-Gel Science and Technology, 96(3), 649-658. https://doi.org/10.1007/s10971-020-05372-2, https://doi.org/10.15488/11006
Chen, G., Widenmeyer, M., Tang, B., Kaeswurm, L., Wang, L., Feldhoff, A., & Weidenkaff, A. (2020). A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 14(3), 405-414. https://doi.org/10.1007/s11705-019-1886-0
Chen, G., Tang, B., Widenmeyer, M., Wang, L., Feldhoff, A., & Weidenkaff, A. (2020). Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ - La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of membrane science, 595, Artikel 117530. https://doi.org/10.1016/j.memsci.2019.117530
Chen, G., Zhao, Z., Widenmeyer, M., Yan, R., Wang, L., Feldhoff, A., & Weidenkaff, A. (2020). Synthesis and characterization of 40 wt % ce 0.9 pr 0.1 o 2–δ –60 wt % nd x sr 1−x fe 0.9 cu 0.1 o 3dual-phase membranes for efficient oxygen separation. Membranes, 10(8), 1-19. Artikel 183. https://doi.org/10.3390/membranes10080183
Fang, W., Du, C., Kuang, M., Chen, M., Huang, W., Ren, H., Xu, J., Feldhoff, A., & Yan, Q. (2020). Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chemical communications, 56(43), 5779-5782. https://doi.org/10.1039/d0cc01759k